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Gravity flow of cohesionless granular materials 
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A constitutive equation appropriate for flow of cohesionless granular materials at  high 
deformation rates and low stress levels is proposed. It consists of an extension and a 
reinterpretation of the theory of Goodman & Cowin (1972), and accounts for the non- 
Newtonian nature of the flow as evidenced by Bagnold’s (1954) experiments. The 
theory is applied to analyses of gravity flows in inclined chutes and vertical channels. 
Experiments were set up in a.n attempt to generate two-dimensional shear flows 
corresponding to these analyses. Velocity profiles measured by a technique which 
makes use of fibre optic probes agree qualitatively with the theoretical predictions, 
but direct comparison is inappropriate because of unavoidable side-wall friction effects 
in the experiments. The existing measure of agreement suggests that the most pro- 
minent effects have been included in the proposed constitutive relations. Tests in the 
inclined chute revealed the possible existence of surge waves and granular jumps 
analogous to hydraulic jumps. 
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1. Introduction 
The mechanics of the flow of granular materials or bulk solids? such as sands, 

powders, seeds and grains is poorly understood at  the present time. Relatively few 
fundamental studies of such flows have been performed despite the fact that there 
are numerous applications in mineral processing and many chemical and pharma- 
ceutical industries. A basic understanding of the flow mechanics would be extremely 
useful, for example, in the design and operation of material handling equipment such 
as bins and hoppers, chutes, channels, conveyors and mixers. 

The most commonplace and probably the earliest application of flow of granular 
materials is the hour-glass; it came into use in the early 14th century for measuring 
the speed of ships and continues today as the humble egg-timer. Although some early 
investigations of granular materials were conducted by Hagen (1 852), who studied 
the flow of sand in tubes, and by Reynolds (1 885), who formulated the idea of dilatancy 
(the expansion of a closely packed assemblage of solid particles when the bulk is de- 
formed), little further work was done until more recent times. Reviews of the flow of 
bulk solids may be found in the article by Wieghardt (1975)) the book by Brown & 
Richards (1970) and a report of a Working Party of the Institution of Chemical Engi- 
neers (Richards 1966). Many of the problems mentioned therein are quite complex 
and likely to embrace aspects of traditional fluid mechanics, plasticity theory, soil 
mechanics and rheology. Valentin has declared, perhaps rather boldly, that the study 
of bulk solids is ‘one of the few remaining new frontiers in engineering’ (see forward 
to Richards 1966). 

1 .1 .  Previous work on quasi-static flows 
Much of the previous work on granular flows has dealt with confined flow in bins and 
hoppers (some typical recent examples are Bransby & Blair-Fish 1974, 1975a, b ;  
Lee, Cowin & Templeton 1974). For the most part, this work dealt with situations or 
flow regions where the inertia effects associated with both the individual particle 
interactions and the bulk deformations are negligible. The emphasis has been on the 
visualization of the flow patterns, either by using dyed particles (e.g. Gardner 1966) 
or by X-ray techniques (e.g. Blair-Fish & Bransby 1973; Lee et al. 1974), and the 
measurement and prediction of wall stresses (e.g. Perry & Jangda 1970; Bransby & 

t We define a bulk solid as an assembly of discrete solid components dispersed in a fluid such 
that the solid constituents are in contact with near neighbours. The solid phase is dominant and 
the material’s behavionr is governed by interparticle cohesion, friction and collisions. 
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Blair-Fish 1974; Savage & Yong 1970; Jenike, Johanson & Carson 1973). The motiv- 
ations have been the need for bin and hopper shapes which permit the bulk solid to flow 
freely without stoppage and the need to devise rational methods for prediction of wall 
stresses to avoid failures that sometimes have occurred in the past (Theimer 1969). 

Typically, predictions of the stress fields have been obtained by solving the quasi- 
static equilibrium equations under the assumption that the bulk solid obeys the 
Coulomb yield or failure criterion in accordance with the Mohr-Coulomb theory of 
limiting equilibrium (Sokolovski 1965). Yielding is influenced by hydrostatic pressure 
in the Coulomb failure criterion, which states that yielding will occur a t  a point on 
a plane element when 

181 = c + T tan 4, (1.1) 

where S and T are respectively the shear stress and normal stress acting on the element, 
c is the cohesion and q5 is the internal angle of friction of the bulk solid. While the 
above approach has commonly been applied, none the less uncertainty does exist 
about the general validity of the Mohr-Coulomb criterion, particularly about the 
choice of q5.  It is usual to take 4 as constant for the mass of granular material although 
it is well known to be dependent upon the strain (Roscoe 1970) and thus upon the 
fractional solids content 1 1 ,  the volume of solids per unit bulk volume (in soil- 
mechanics terminology 1’ equals one minus the porosity). 

The uncertainties mentioned are relatively minor when compared with those asso- 
ciated with the constitutive equation relating stresses and strain rates that one 
requires for the prediction of the velocity field during flow of granular materials. 
Several quite different analyses which attempt to formulate equations to describe 
the velocity field exist in the soil-mechanics literature (among them are Drucker & 
Prager 1952; Geniev 1958; de Josselin de Joiig 1959, 1971; Takagi 1962; Spencer 
1964; Zagaynov 1967; Mandl & FernAndez-Luque 1970; James & Bransby 1971). 
None of these theories, most of which have been reviewed by Mandl & Fernhndez- 
Luque (1970), are universally or even widely accepted. In  extensive passive earth 
pressure tests (Roscoe 1970) as well as studies of initial deformations of sand in mass 
flow bunkers (Bransby & Blair-Fish 1975a, b )  using radiography, the Cambridge Soil 
Mechanics Group has observed that the rupture surfaces coincide with the lines of 
zero extension. They have discussed cohesionless materials in which q5 is different 
from the angle of dilation 8. Assuming Saint-Venant’s hypothesis that the principal 
axes of stress and strain rate coincide, the velocity characteristics (which correspond 
to the zero-extension lines) make angles of 4s.r- to  the direction of the major 
principal stress whereas the stress characteristics are inclined at $77 - &5. Most of 
the earlier analyses by others differ considerably from this approach. For example, 
Geniev (1958) assumes the material to be incompressible (6 = 0) and that the prin- 
cipal axes of the strain rate are inclined a t  to the principal axes of stress, in 
violation of Saint Venant’s hypothesis. Takagi (1 962) permits the material to expand 
or contract during deformation but proposes that the stress and strain-rate character- 
istics coincide. De Josselin de Jong (1959, 1971), Mandl & FernBndez-Luque (1970) 
and Spencer (1964) assume that the material is incompressible and deforms in plane 
strain by shear along the stress characteristics. These three analyses show that the 
principal axes of the stress and strain rate need not coincide but may be inclined at 
any angle between k &5. However, the constitutive relations are different; Spencer’s 



56 S . B.  Savage 

relation satisfies the principle of material-frame indifference whereas the relation of 
Mandl & Fernindez-Luque is not independent of a superimposed uniform rigid-body 
translational motion (Spencer 1971). It would not be unfair to say that all of the above 
analyses are contentious to some degree in the soil-mechanics context (see papers 
and discussion of Session 2 of the Roscoe Memorial Symposium, Parry 1971) and that 
the applicability of any of them to cont’inuous flow of bulk solids is uncertain. 

1.2.  Flows where inertia andlor strain-rate effects are important 
Most of the above-mentioned analyses were intended for slow yielding or flow of 
granular materials; the stress components were determined by use of a yield criterion 
and the equilibrium equations (neglecting the inertia forces). The kinematics of the 
flow field were related to the previously determined stress field. The magnitudes of 
the stress components were assumed to be unaffected by the rates of deformation. 
While this assumption may be appropriate to some very slow granular flows, for 
example in the upper parts of bins and hoppers, there are other instances, such as 
gravity flow in chutes and pipes, where inertia and strain-rate effects are likely to be 
important. In  these faster shear flows, as well as in the slower ‘quasi-static’ flows, one 
of the central theoretical problems is the development of constitutive equations that 
can be used for the prediction of flows in various practical devices. 

The flow rate of granular materials from hoppers has been the subject of several 
experimental studies (see Brown & Richards 1970, chap. 6)  and a few analyses 
(Brown 1961; Savage 1965, 1967; Davidson & Nedderman 1973). Although the 
Consideration of inertia forces played an essential role in all of these analyses, the 
analyses were simple, approximate ones which neglected the details of the velocity 
profiles and did not require the use of a constitutive equation relating stresses and 
strain rates in order to predict overall flow rates. 

A few experimental investigations of the flow of bulk solids in pipes and chutes 
have been conducted. Some had specific technological applications in mind (e.g. Wolf 
& Von Hohenleiten 1945; Choda & Willis 1967) while others were aimed more towards 
obtaining a better understanding of the flow mechanics. Bingham & Wikoff (1931) 
measured the gravity flow of dry sand through circular glass tubes of small diameter 
and found the surprising result that  the mass flow rate increased with tube length. 
Richards (see Brown & Richards 1970, p. 185) has obtained similar results. The 
phenomenon is no doubt due to pneumatic effects associated with interstitial air. 

Takahasi (1937) studied the gravity flow of various dry sands in a straight chute of 
rectangular cross-section a t  various angles of inclination. He noticed two flow regimes: 
one which consisted of an upper thin layer of particles flowing over a stationary layer 
overlying the chute bed and a second where all the particles were in motion, each 
particle following a chaotic fluctuating path and interacting vigorously with its 
neighbours. The velocity of particles (estimated from their trajectories) leaving 
the downstream end of the channel increased rapidly with inclination angle for the 
first flow regime and much less rapidly for the second. Takahasi drew attention to 
the similarities between these experiments and natural phenomena such as snow 
avalanches and land slides (see Scheidegger 1975, chaps. 4 and 5 for a recent discussion 
of such catastrophic events). 

Roberts (1969) studied the flow of millet seed in Perspex chutes of rectangular 
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cross-section. By using high-speed cine photography (1 200-2000 framesls), he found 
that, although the grains slipped on the smooth Perspex chute walls, a small velocity 
gradient existed over the depth of the granular flow. Roberts assumed that the 
granular flow was analogous to  the sliding of a block on a rough incline. Using an 
effective angle of friction between the grains and the channel (which accounts for 
friction on the side walls as well as the bottom) and assuming the bulk to  be in- 
compressible, Roberts developed a simple analysis which gives the variation of the 
depth-averaged velocity and the flow thickness with downstream distance. The 
effective friction angle was measured under quasi-static conditions and assumed to 
be velocity independent. For a straight inclined chute Roberts’ analysis predicts 
that the flow accelerates, decelerates or remains uniform when the effective friction 
angle is respectively less than, greater than or equal to the chute angle of inclination. 

Ridgway & Rupp (1970) examined the flow of various sands down a brass chute 
of rectangular cross-section. Particles of three different size ranges (250-355 p m ,  
420-500pm and 758-850pm) were obtained by sieving. Most of the experiments 
shown were for very shallow depths of granular flow of 2-3 mm (corresponding to  
only a few particle ‘diameters’). For chute inclination angles between 30 and 60’ the 
flow accelerated down the 1 m length of chute. Particle velocities were determined 
with a high speed cine camera by filming from above the free surface and from below 
through a glass section in the bed of the chute. No velocity gradient over the depth 
was evident. Ridgway & Rupp attempted to  determine bulk density profiles by 
positioning a horizontal knife-edge at different depths and weighing the flows collected 
in a given time from above and below the knife-edge. With the assumption of a uni- 
form velocity profile, the density profile was then calculated. It was found that the 
density decreased with distance downstream, more so for the larger particles than 
for the smaller ones. Ridgway & Rupp also determined that the density varied con- 
siderably over the depth, typically from a low value of about 0.2 g/c.c. (about 15 % 
of the stationary poured bulk density) a t  the bed to a maximum roughly a t  the mid- 
depth of about 1.0 g/c.c. (about 65 yo of the stationary poured bulk density). Because 
of considerable particle saltation the bulk density dropped gradually to  zero near the 
free surface, where a ‘surface cloud’ of particles was observed. Owing to  the large 
size of the particles relative to the depth (thus relative to  the gap between the bed 
and the knife-edge) and the likelihood of an upstream effect of’ the knife-edge flow 
divider, the density profiles presented by Ridgway & Rupp may be unreliable. 

Suzuki & Tanaka (1 970) endeavoured to use the inclined chute as a viscometer for 
particulate materials. To do this requires a priori an assumption as to  the form of thc 
constitutive equation. Suzuki & Tanaka assumed that the bulk solid behaved as a 
Bingham fluid with a constant yield stress and a constant viscosity. This is unrealistic 
since, first, the bulk solids behave as a Coulomb material in which the yielding is 
influenced by the hydrostatic pressure [see (l.l)], and second, the experiments of 
Bagnold (1  954) indicate that the stresses are related to  the strain rates in a nonlinear 
way . 

Augenstein & Hogg (1  974) determined the friction angles between thin layers of 
sand particles and both a smooth and a sand-roughened inclined steel chute by using 
t,he velocity variation along the chute in conjunction with a simple analysis similar t o  
that given by Roberts (1969). The velocities were estimated from the trajectories of 
particles leaving the end of the chute. 



58 S .  B.  Savage 

1.3. Previous work related to constitutive equations for rapidly jloiviny 
granular materials 

Over 20 years ago Bagnold (1954) performed experiments on neutrally buoyant 
spherical particles suspended in Newtonian fluids (water and a glycerine-water- 
alcohol mixture) and sheared in a coaxial rotating cylinder apparatus. Both the torque 
and the normal stress in the radial direction were measured when various concen- 
trations of the spherical grains were sheared. Bagnold distinguished two limiting 
types of behaviour. I n  the so-called macro-viscous region (corresponding to low shear 
rates), which is dominated by fluid viscosity, the shear and the normal stress are linear 
functions of the velocity gradient. Of primary present concern is the grain-inertia 
region, in which the fluid in the interstices plays a minor role and the dominant effects 
arise from particle-particle interactions. Both the shear and the normal stresses in 
this region are proportional to the square of the velocity gradient. The interesting 
phenomenon was the presence of a normal stress (which Bagnold termed the dispersive 
pressure) proportional to the shear stress, reminiscent of the quasi-static behaviour 
of a cohesionless Coulomb material [equation (1. l)]. For the grain-inertia region 
Bagnold presented a simple analysis, roughly analogous to kinetic gas theory, to 
predict the normal (dispersive) pressure and the shear stress. He neglected the sus- 
pending fluid phase and considered the interaction of two layers of spherical grains of 
diameter D in a shear flow U ( y )  as shown in figure 1. The mean distance between 
centres is bD and the resulting free distance is s. Then 

b = 1 + s / D  = 1 + l /h,  (1.2) 
where h is the ‘linear concentration’. The volume concentration may be expressed as 

where Co is the maximum possible concentration when h = LX (for spheres 

C,, = 7r/342 = 0.74). 

Bagnold’s analysis indicated that the normal stress in the y direction was 

P = ap,hf(h)  D2(dU/dy)2 cos ai (1.4) 

S = P t a n a i ,  (1.5) 
and the grain shear stress was 

where ps is the grain density, f is an unknown function of A ,  a is a constant and ai is 
an unknown angle dependent upon collision conditions. (Similar results follow directly 
from dimensional analysis.) At the higher shear rates (in the grain-inertia region) the 
experimental shear stress varied with dO/dy  as predicted by (1.4) and (1.5) and 
Bagnold was able to determine a ,  ai andf(h). For h < 14, f = A, and for h > 14,fin- 
creases very rapidly with A. Large h corresponds to the grains being close together; 
if h is large enough the grains lock together and very large stresses are required to 
shear the bulk. The angle ai was found to vary only slightly with A. 

Bagnold applied these results to predict the flow of dry sand down an incline, the 
bulldozing of a mass of sand and the ‘singing’ mechanism in desert dunes (Bagnold 
1954,1966). Despite its fundamental importance, Bagnold’s work seems to have gone 
unnoticed by workers concerned with flow of bulk solids until recently. 
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l - x  

FIGURE 1 .  Definition sketch for Bagnold’s (1954) theory of stresses in 
the grain-inertia region. 

Bridgwater (1972) developed an annular dynamic shear cell to  measure the 
effects of the rate of strain upon stresses in various particulate solids. With the axis 
of rotation vertical, loading weights maintained a constant (vertical) normal stress 
and torques were measured a t  various rates of rotation of the lower half of the annular 
shear cell. Although the results, as presented, initially suggest only a small ‘velocity 
dependence ’ of the stresses, further consideration reveals that  they confirm in part 
Bagnold’s (1  954) results. I n  the grain-inertia region Bagnold found that both the 
dispersive normal stress and the shear stress increased with h and d U / d g  but that 
tana, ,  the ratio of the shear stress to  the normal stress, remained almost constant. 
In Bridgwater’s apparatus the normal stress was fixed and since the bulk solid could 
expand vertically (decreasing A )  little variation of the shear stress with the shear rate 
is to be expected. 

Goodman & Cowin (1971, 1972) have developed a continuum theory for the 
representation of the stresses developed during the flow of granular materials. The 
theory is intended for situations where the stress levels are less than 10 psi (Cowin 
1974a) and where pneumatic effects are negligible. The non-dissipative part of the 
stress tensor is related to  the fractional solids content v and the gradients of 1’. The 
dissipative part is assumed to  behave as a Newtonian fluid. On the basis of Bagnold’s 
work (1954, 1966) this last assumption is doubtful, but as Cowin ( 1 9 7 4 ~ )  points out, 
the theory can be extended without affecting the non-dissipative part of the stress 
tensor. The theory has been ‘linearized’ and specialized to  the case of incompressible 
granules (Goodman & Cowin 1971, 1972) and it was shown that for limiting 
equilibrium the resulting constitutive equation describes a Mohr-Coulomb material 
(see also Cowin 19746). The theoryfor cohesionless materialswith incompressible grains 
has been applied to  the problems of granular flow down an inclined plane and between 
vertical parallel plates (Goodman & Cowin 1971). Apart from the assumption of 
Newtonian behaviour for the dissipative part of the stress tensor, the solutions to 
these problems were based upon a special case of the linear theory which contains 
certain inconsistencies. These inconsistencies have been rectified in a later paper by 
Cowin ( 1 9 7 4 ~ ) .  

Because of the Newtonian flow assumptions, Goodman & Cowin (1971) found that 
steady, fully developed, uniform depth, open-channel flows were possible for all 
channel inclinations greater than the angle of repose of the material. Their theory 
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also required a plug flow in the central region of flow between parallel plates in order 
to satisfy the steady equations of motion. 

As a final complication, there is the question of whether or not smooth steady 
velocity profiles exist during granular flow a t  low stress levels. Recently Lee et al. 
(1974) have suggested that two flow regimes exist: one comprised of essentially 
incompressible rigid-body motions and the other consisting of narrow shear zones 
which partition regions of the first type. 

The foregoing discussion has attempted to  indicate the unsettled state of the 
mechanics of flow of granular materials, particularly for cases when the material is 
undergoing rapid deformations such that inertia and strain-rate effects are important. 
The present paper describes both theoretical and experimental studies which en- 
deavoured to  clarify certain aspects of granular flow. While the main orientation of 
the paper is towards the development of realistic constitutive equations, the work 
described is also of intrinsic practical importance with regard to  bulk solids transport. 
The paper begins with an account of some preliminary exploratory experiments on 
granular flow down a long inclined chute. A constitutive equation is proposed and 
used for the analysis of two simple two-dimensional shear flows: free-surface flow 
down an inclined chute and flow down a vertical channel. An attempt to  produce these 
two flows experimentally was made and velocity profiles for various flow conditions 
are presented. Finally, granular jumps, which are analogous t o  open-channel hydraulic 
jumps, are discussed. 

2. Preliminary experiments 
Some exploratory experiments were performed and it is worth recording the results 

of these tests as a preliminary to  tfhe detailed theoretical and experimental studies 
described in later sections. I n  these preliminary experiments surface velocity profiles 
and depth profiles were measured during free-surface flow down an inclined channel. 

A diagramatic sketch of the apparatus is shown in figure 2. The flow channels 
were made from a 6.1 m length of a 5 x 5 in. (nominal) aluminium I-beam turned on 
its side. The surface of one of the channels formed by the I-beam was left smooth 
while the channel on the reverse side of the I-beam was roughened by glueing sand 
grains (about 0.5 mm mean diameter) to  its surface. The upper end of the I-beam 
rested on a pivot support so that the angle of inclination < could be varied. The bulk 
solid was Ballotini spherical glass beads with a diameter of 0.42-0-59 mm and a 
specific gravit,y of 2.90. The beads entered the flow channel smoothly from a transition 
section attached to  the bottom hopper portion of the supply bin. The flow rate was 
regulated by the insertion of calibrated orifice plates in the lower end of the hopper. 

2.1. Surface velocity projles 
The velocity profiles across the width of the channel a t  the free surface were indicated 
by thin lines of coloured beads dropped periodically onto the free surface by a bead 
injector which could be installed a t  various stations directly above the channel. The 
velocity profiles were also determined by filming the flow with a Bolex I 6  mm cine 
camera (typically a t  64 frames/s). The granular material for these tests consisted of 
a small percentage of coloured beads mixed with uncoloured ones. By measuring the 
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Inclined shute 

FIGURE 2 .  Schematic diagram of inclined-chute apparatus used for 
preliminary exploratory experiments. 

Distance across channel, x j  (cm) 
FIGURE 3. Surface velocity profiles for glass beads flowing down the smooth-walled 10.8 cm 
wide inclined chute. Measurements made a t  station 2.97 m from entry at  a mass flow rate of 
0.89 kg/s. C, 7, runs 1 and 2 respectively for 6 = 18.8", h = 1 ern; 0 ,  6 = 20.2", h = 0.65 cm. 

distance that individual particles travelled between successive frames of the film, the 
velocity profiles were ascertained. 

For the smooth-walled channel, considerable slip occ.urred a t  the walls. The wall 
friction angle ( N 18') was less than the internal friction angle ( N  23") for the glass 
beads and plug flow with a virtually uniform velocity resulted. The case 6 = 18.8" 
in figure 3 is typical of the profiles at lower channel inclinations and larger depths. 
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With an increase in slope and/or decrease in the depth h, slip still occurred at the 
walls but a slight shear developed in the interior of the flow (see, for example, the 
case 6 = 20.2" in figure 3). For small depths and steep inclinations the bulk density 
appeared to be quite low and particles moved in a saltation mode, with a 'cloud' of 
particles near the (surface' similar to that described by Ridgway & Rupp (1970). 

For the rough-walled channel it appeared that something close to a no-slip condition 
was produced a t  the walls and a blunt velocity profile developed in a short distance 
from the channel entrance. Individual particles near the free surface followed random 
fluctuating paths. The frame analysis of the cinit film was extremely tedious since it 
proved necessary to average a large number of frames in &der to obtain definitive 
mean velocity profiles. 

A typical rough-wall velocity profile is shown in figure 4. Each data point shown 
results from an average of four frames taken with the cine camera running a t  64 
frames/s. Because of the short averaging time considerable (scatter' is present, but 
the general shape of the mean velocity profile and a rough idea of the magnitude of 
the velocity fluctuations are evident. 

It was found that lines of coloured beads placed on the surface by the bead injector 
deformed with downstream distance in the manner shown schematically in figure 5 (a) .  
The originally straight time lines, which developed initially into quite smooth but 
blunt profiles, became sharper and more peaked with increasing time. Such behaviour 
indicated the presence of slow secondary flows moving at the surface from the side 
walls towards the channel centre-line (figure 5 b ) ,  since the surface streamwise velocity 
profiles were found to be similar a t  various downstream stations. When small patches 
of coloured beads were placed on the surface near the side wall they were found 
to  move slowly towards the centre-line while travelling downstream, giving further 
evidence of the secondary flows. 

2.2. Depth projiles 
The variation of flow depth with downstream distance was measured for several flow 
rates in both the smooth- and the rough-walled channel by means of a movable depth 
gauge mounted on the top of the flow channel. 
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Some depth profiles for smooth walls are shown in figure 6. Results for two test 
conditions are plotted; in one case the channel was unobstructed and in the other a 
wedge-sectioned strip with a vertical upstream face 0.5 cm high was placed on the 
channel bottom across the flow, 0.4 m from the channel entrance. For the unobstructed 
case, the flow decelerates after entering the channel and the depth gradually increases 
and approaches a uniform value a t  a downstream distance of about 4 m. The purpose 
of the obstruction was to  cause an  increase in the flow depth close to  the channel 
entrance. Despite the larger 'initial' depth the flow was found to approach the same 
uniform depth as for the smooth unobstructed channel. The fact that  the same uniform 
depth was approached from both above and below implies the existence of a 'normal 
depth ' in the sense that the term is used in hydraulics. This result is in contradiction 
with the theory of Roberts (1969), in which the acceleration of the depth-averaged 
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FIGURE 7. Depth profile for glass beads flowing down the rough-walled 10.8 crn 

wide inclined chute at a mass flow rate of 0.56 kg/s and 5 = 23.6”. 

flow is constant. However, it should be noted that in tests performed a t  flow rates a 
few times larger than that of figure 6, resulting in higher initial depths, the mean flow 
did accelerate and flow depths decreased with streamwise distance. 

I n  the unobstructed smooth-wall tests the flows were ‘supercritical’ (Froude 
number > 1 ) .  Surge waves and ‘granular jumps’ analogous to hydraulic jumps could 
be formed by placing obstructions or controls a t  the downstream end of the channel. 
Even in the absence of any obstructions, occasionally surge waves were spontaneously 
generated a t  the downstream end of the channel. They moved upstream for distances 
of up to  1.5 m and were then swept back downstream again. The mechanism respon- 
sible for the generation of these spontaneous surge waves is unknown. A detailed 
discussion of the granular jumps is presented later in 0 7. 

Figure 7 shows a typical depth profile for rough walls. The flow decelerates after 
entry and reaches the ‘normal depth ’ in a relatively short distance. 

A short 16 mm cine film showing the velocity profiles, surge waves, granular jumps 
and other phenomena is available on loan from the author. 

Some of the more salient aspects of the flows disclosed by these preliminary experi- 
ments may be summarized as follows: 

(a )  Although considerable slip of the granular material occurs a t  smooth walls, 
the no-slip condition may be approached by applying wall roughness of the same 
order as the particles making up the bulk solid. 

( b )  Relatively smooth velocity profiles occur during flow down an inclined chute 
The flow is unlike the slow initial flow in hoppers observed by Lee et at. (1974), which 
consisted of the movement of irregular rigid regions partitioned by narrow shear zones. 

( c )  ‘Normal’ depths appear to exist for free-surface flows. This implies a shear-rate 
dependence in the constitutive equation. 

(d )  Secondary flows develop during flow down the chute. They are reminiscent of 
those predicted by Green & Rivlin (1956) for certain non-Newtonian fluids which 
exhibit ‘ normal-stress effects ’. 
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3. Constitutive equations 
The continuum theory described in this section is intended to  represent the flow 

of granular materials a t  relatively low stress levels and high shear rates such that the 
bulk behaviour is governed by interparticle friction, collisions and other interactions 
corresponding to  the grain-inertia regime of Bagnold (1954). The theory is not in- 
tended to  represent the stresses when the rate of deformation becomes zero (the 
‘equilibrium ’ state of Goodman & Cowin 1972). The effects of the fluid contained in 
the interstices and electrostatic adhesion are assumed to  be negligible (this implies 
that the bulk solid consists of relatively large particles of fairly uniform size). It is 
proposed that an appropriate theory should ( a )  reflect the Mohr-Coulomb behaviour, 
where the shear stress is proportional to  the normal stress, and ( b )  relate the stresses 
to the strain rates in a non-Newtonian way in accordance with the experiments of 
Bagnold (1 954). 

A preliminary version of the present theory was delivered a t  Euromech Colloquium 
84 on Mechanics of Granular Naterials, Warsaw, Poland in 1976. Professor Stephen 
Cowin (Department of Mechanical Engineering, Tulane University, New Orleans) 
subsequently advised me that this formulation was incomplete since certain terms 
in the constitutive equation had been omitted. We have collaborated in writing the 
following subsection in an attempt to  present the theory in a form which is more 
complete as well as more direct. 

3.1. A nonlinear theory for Jlowing granular materials 
B y  Stephen C.  Cowin and Stuart B. Savage 

A simple and general theory for flowing granular materials with relatively rigid grains 
is presented here. This theory has some similarity to the theory presented by Goodman 
& Cowin (1971, 1972), but the presently proposed theory is more general because i t  
makes fewer, less restrictive assumptions. Goodman & Cowin proposed that one den- 
sity field p(x, t )  be interpreted as a bulk density which can be expressed as the product 

(3.1) 
of the fields v and y ,  

P = VY, 
where y(x, t )  is the actual density of the grains a t  the place x a t  time t and V(X, t )  is 
the volume fraction of solids a t  the place x a t  time t. The field v(x, t )  is called the volume 
distribution and it is related to  the porosity n or the void ratio e by 

v = 1-n = ( I + e ) - l ;  

of course 0 < 1’ < 1. The representation (3.1) for the density introduces an additional 
kinematic variable into the structure of the classical continuum theories. I n  the 
classical continuum theories the density p is determined from the continuity equation 

p + p d i v v  = 0, (3.2) 

(3.3) 

and the velocity v(x, t )  = ui(xi, t )  e, is determined from the conservation of linear 
momentum pi. = div T + pb 

using a constitutive equation relating the stress to  the gradients of the velocity or 
displacement fields. The term b in (3.3) represents the body force. Equations (3.2) 
and (3.3) can be viewed as a system of four scalar equations in four scalar unknowns, 

3 F L M  92 
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the density and the three velocity components. The introduction of the compound 
representation (3.1) of the density introduces another unknown in the theoretical 
structure. As a consequence of a variational study that was subsequently published 
(Cowin & Goodman 1976), Goodman & Cowin (1971, 1972) proposed an additional 
equation. However, it has been recently pointed out to the writers by Professor J. T. 
Jenkins (Department of Theoretical and Applied Mechanics, Cornell University) that 
when the additional assumptions of (a )  a cohesionless material with ( b )  incompressible 
grains and ( c )  a free energy function linear in [grad vl are made, the theory of Goodman 
& Cowin (1971, 1972) is so constrained that few solutions of interest are obtained. As 
we wish to consider here the flow of a cohesionless material with incompressible grains, 
we shall formulate a theory similar to that of Goodman & Cowin (1971, 1972), but 
one which makes fewer and less restrictive assumptions. The present development 
will avoid the extra equation of Goodman and Cowin by using the assumption of grain 
incompressibility to reduce the number of independent field variables to four. 

The assumption of grain incompressibility is written 

y = constant. (3.4) 

3+vdivv = 0 (3.5) 

It follows from (3.2), using (3.1) and (3.4) that 

Thus, rather than seeking an additional equation to govern the additional variable 
as Goodman & Cowin did, the constant grain density y is eliminated as an independent 
field variable and there are then four scalar equations, (3.3) and (3.5)) to determine 
four scalar unknowns, v and v, assuming the existence of a constitutive relation for 
T which completely determines T as a function of v and v and their derivatives. Thus, 
to complete the system of governing equations we assume that the stress is an iso- 
tropic function of vo, v, grad v and the rate of deformation D, 

T = T(v,,, v, grad v, D) 

2D = grad@v+v@grad 
where D is given by 

and where vo is a reference value of the volume fraction v. Given that y and the body 
force b are known, the system of equations (3.3), (3.5) and (3.6) is a system of ten 
scalar equations for the ten scalar unknowns v, v and T. 

The form of the dependence of the stress T upon grad v and D can be made more 
explicit using the assumed isotropic dependence of T upon grad v and D. To do this 
we introduce the notation 

and observe that 
M = (grad v) @(grad v) (3.8) 

(3.9) tr M = lgradvI2, M2 = (tr M) M = IgradvI2 M. 

The constitutive relation (3.6) may be written 

T = a.,I+a,D+a2M+a,(MD+DM)+a,D2+a5(MD2+D2M) (3.10) 

where ao-a5 are functions of vo, v, tr M, tr D, tr D2, tr MD and tr MD2. This representa- 
tion for T follows from the formula for the reduction of a matrix polynomial of two 
matrices (cf., for example, Green & Adkins 1960, pp. 315-318). The complicated form 
of T given by (3.10) may be necessary if it is found that certain kinds of normal stress 
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effects (Truesdell 1974) are displayed by flowing granular materials. At this time 
there are insufficient experimental data available to settle the question. For the 
present paper we make use of a simpler form in which T depends linearly on the strain 
rate tensor D. It will be shown that this is sufficient to model the main features of 
material behaviour in the grain inertia regime that have been reported by Bagnold 
(1954, 1966). I n  this case (3.10) reduces to  

T=a,I+a,D+a,M+a,(M.D+D.M). (3.11) 

Equation (3.11 ) is still extremely general and further assumptions regarding the ex- 
plicit functional dependence of a,, a,, a2 and a3 upon v,, v, tr M, tr D and tr MD are 
required before i t  can be used for the prediction of various flow situations. Physical 
discussions providing some justification for these assumptions are presented in the 
following subsections. 

3.2. The equilibrium stress ’ 
B y  Stuart B.  Xavage and Stephen C .  Cowin 

In this subsection we present some heuristic arguments to restrict the coefficients 
a, and a2 appearing in (3.11). We shall consider the problem of associating the stress 
state obtained from (3.11) as D -+ 0 with limiting equilibrium in granular materials. 
Cowin (1974 b )  showed that constitutive equations which were isotropic functions of 
D and a single vector argument satisfied a generalized Mohr-Coulomb type yield 
criterion as D -+ 0. The proof of Cowin applies to the constitutive equation (3.11). 
We shall require that (3.11) satisfies a traditional Mohr-Coulomb condition as D -+ 0 
and this will permit us to associate part of a, and a2 with the angle of internal friction 
Q and the cohesion c introduced in (1 .1) .  The requirement that  the traditional Mohr- 
Coulomb condition be satisfied by T as given by (3.11) in the limit as D -+ 0 yields 
the following representations for a, and a2 

a, = ccot#-p+aA and a2 = -2a+aL, (3.12) 

where p = a(---l)  1 tr M 
sin # (3.13) 

and where a, c and Q depend upon v,, v and tr D but not upon tr M or tr MD; and 
u; and ah depend upon v,, v, tr D, tr MD, but they must vanish as D + 0. The following 
representation for the stress 

T-T,=aA I+a,D+ahM+a,(M.D+D.M), (3.14) 

where To = (Ccot$-p) I-ZaM, (3.15) 

is obtainedfrom (3.11) when (3.12) is employed. We might regard To as an ‘equilibrium 
stress ’ in the sense that it is equal to T as D + 0. 

We shall now show that the stress To specified by (3.15) satisfies the Coulomb 
failure criterion. The stress vector t acting on a surface whose normal is n is given by 
(3.15) as 

(3.16) t = Ton = (c cot $ - p )  n - 2a- grad I?. 
av 
an 

3-2 
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Shear stress, S t 

FIGURE 8. Mohr's circle representation of equilibrium stresses q;. 

The normal stress component on the plane whose normal is n is t . n, thus we define 

T = t . n  = ccot$-p-Za - . (;y (3.17) 

The square of the magnitude o f t ,  t . t, is equal to the sum of the square of the normal 
stress T acting on n and the square of the shear stress X acting on the plane whose 
normal is n, thus from (3.16) 

T2+ 8 2  = t . t = (C cot $ -p)2- 4a(c cot $ -p)(:)'+ 4a2(;)' (grad vI2. (3.18) 

This representation can be rewritten in the form 

S2 + (T - t)' = s2 (3.19) 

where s = atr M = algradvI2; (3.20) 

t = ccot$-p-atrM = ccot$-p-algradvI2. (3.21) 

The result (3.19) shows that the stress state To has a Mohr's circle representation with 
radius s located a t  (t, 0) in the (T, S) plane. Elimination of algrad vI2 between (3.20) 
and (3.21) yields a traditional representation of the Coulomb yield condition 

s = sin $(c cot $ - t). (3.22) 

This expression can be converted to a representation in terms of S and T on the 
failure surface by use of the formulas 

s = ISl/cos$, t = T -  181 tan$ (3.23) 

which hold there a t  limiting equilibrium. 
Thus (3.22) may be reduced to 

1x1 = c-Ttan$.  (3.24) 

[Note that here we use the sign convention that tensile stresses are positive. This is 
opposite to the usual soil mechanics and is responsible for the difference in sign arising 
between (3.24) and (l . l) .]  

I n  the remainder of this work we assume that the material is cohesionless and thus 
that e is zero. The representation of ( t ,  s) and (T, S )  in the Mohr's circle plane is shown 
in figure 8. 
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Although the Mohr-Coulomb type behaviour expressed by (3.19)-(3.24) is an 
attractive feature of the theory, there is another aspect that is less plausible if To is 
to be regarded as the stress developed a t  limit equilibrium (in the sense that the term 
is used in soil mechanics). Taking the cohesion c to be zero in (3.15) we note that if 

(To)ij = !P:j = -ptYi.j-2a~,i~,j 

is to  be non-zero for i =/= j, then both v , ~  and v, must be non-zero. 
The resulting dilemma is illustrated by the following example. Consider the situ- 

ation of a Rankine stress state (Terzaghi 1963, pp. 29-32) associated with a granular 
material which is in a state of limit equilibrium and has an inclined plane free surface 
of large extent. The equations of static equilibrium require the existence of a shear 
stress everywhere below the free surface in a direction parallel to the free surface and 
in the plane formed by the body-force vector and the normal to the free surface. 
It may be reasonable on physical grounds to expect no variations of Y in directions 
parallel to the free surface. If this is so then (3.15) is incapable of yielding the shear 
stress required for static equilibrium. 

Nevertheless this may not be a major concern if we are interested only in flow 
situations. We consider the state a t  limit equilibrium to be essentially different from 
that where flow occurs, however slowly. For example, in the preliminary tests with 
the rough-walled channel (8  2) inclined a t  angles slightly less than the angle or repose, 
material of uniform depth would remain motionless in the channel in the absence of 
an external disturbance. However, by manually giving the material a push it could 
be made to flow slowly but continuously and uniformly at constant depth. Thus two 
different flow states existed a t  the same channel inclination (but presumably a t  
different values of u ) . t  I n  both cases the inertia forces were zero and equilibrium was 
established by a balance between the shear stresses and the body-force components 
in the streamwise direction. The shear stresses result from different mechanisms; in 
the static case they result from dry interparticle friction' and particle interlocking 
whereas in the shear-flow case particles override other particles and the inertia asso- 
ciated with interparticle collisions becomes more important. I n  other words the static 
and flowing cases may be regarded as two different states, rather like (metaphorically 
speaking) a solid and a liquid when viewed on the microscopic scale. There is not a 
smooth transition from one state to another as D + 0 and thus a constitutive equation 
suitable for flowing materials need not necessarily be appropriate to describe the state 
of static equilibrium. With this in mind we interpret the stress To given by (3.15) 
merely as an additional component of stress arising during the deformation of the 
bulk solid because of a non-uniform v. It may formally be obtained from T by setting 
D to zero (a more careful definition will be given subsequently). 

The theory of $3.1 was derived by first postulating that the response of the granular 
material depends upon gradv (among other things) and then proceeding with the 
formal arguments of continuum mechanics. Although there is evidence to suggest 
some relationship between v and the stresses (see for example the discussion by Cowin 
1 9 7 4 ~ )  it is not physically obvious nor has it been suggested previously (in terms of 
specific mechanical or physical models) why the stresses should depend upon the 
gradients of v. By considering individual particle interactions a rather crude physical 
argument for the presence of such a dependence may be postulated. The following 

t A related phenomenon of avalanching on sand dunes has been discussed by Allen (1970). 
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Laver B 

(C) 

FIGURE 9. Simple interpretation of u-gradient stresses. (a) Shear flow ul(zz). ( b )  Plan view of 
regularly packed particles of layer A in zl, z3 plane. ( c )  Elevation view (zl, z2 plane) of ‘shearing’ 
motion when &/ax, + 0. Because of the gradient of v in the z, direction, layers of particles 
cannot readily pass over each other; local dilations and increased stresses result. 

discussion provides a reinterpretation of the ‘equilibrium ’ stress of Goodman & 
Cowin as well as some physical justification for the detailed functional form to be 
assumed for (3.14). 

Consider a shear flow ul(xz) as shown in figure 9 (a )  between plane layers of regularly 
packed particles of equal diameter. For very close packing and uniform v, in the 
layer (layer B )  just above layer A the individual particles follow the zigzag paths 
indicated in figure 9(b). The spacings in both layers are the same and particles in 
layer B can move through the ‘valleys’ between particles in layer A .  

For the case where there are gradients of v (the case of non-zero av/ax, is shown), 
the spacing of particles in layers A and B are different and there occur regions as 
shown in figure 9 ( c )  where local dilations and normal stresses are generated when the 
two layers are sheared. Because of the ‘frictional’ nature of the bulk solid, normal 
‘stresses’ in the x1 and x3 as well as the x2 direction are generated. According to (3.13), 
(3.15) and (3.19)-(3.22) their magnitudes depend upon the internal friction angle 4. 
The situation shown at the right-hand side of figure 9(c) is analogous to a ‘centre of 
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dilation’. It is pertinent to take note of a model of a centre of dilation for the 
continuum t,heory of dislocations discussed by Eshelby (1951) in which an elastic 
sphere is forced into a spherical hole of slightly smaller diameter in an infinite elastic 
medium. 

The above argument is somewhat simplistic and should be regarded as suggestive 
rather than precise. In  the real case the particles will not be regularly spaced and inter- 
particle collisions will be more random. Still, it seems reasonable that a mechanism 
similar to that described above will be operative when gradients of v are present. 
The extra stresses generated by particle overriding of the type analogous to a ‘centre 
of dilation’ will depend upon v and v , ~  but perhaps only slightly upon the rate of 
deformation of the bulk; increased shear might increase the frequency of generation 
of the centres but with little change in the overall average ‘stress’ levels. The 
individual particle inertia forces associated with particle overriding are probably small 
compared with those associated with interparticle collisions except when grad v is 
very large. 

On these grounds we assume that it is permissible to neglect terms in the 
constitutive equation (3.14) which involve products of grad v and D. The argument 
for doing so is not a compelling one and the assumption should be regarded partially 
as a simplification which may require revision in view of new experimental data. 
Equation (3.14) then reduces to  

(3.25) 

where ah and a, are functions of at most vo, v, tr D, tr D . D and tr D.  D.  D or alter- 
natively of vo, v and the principal invariants 

(3.26) 
I l = t r D ,  1 2 = & ( t r z D - t r D . D ) ,  

I3 = det D = 4 tr3 D- g t r  D t r  D. D +& tr D.  D. D. 

The stress tensor T now consists of the sum of two parts: a dissipative part T* 
which depends upon D and a second part To which is independent of D but which 
depends upon grad 1’. We henceforth term To the ‘ v-gradient stress’ rather than the 
equilibrium stress. I n  keeping with the previous discussion of particle overriding and 
the fact that shear is necessary for particle overriding to occur we define 

T* = T-To = ah1 +a,D, 

1 

1 f T  

where it is implied that To is averaged over a sufficient number of particles. 
We now proceed to specify more completely the manner in which sin$ and a de- 

pend upon 1’. It is known from the soil-mechanics literature (e.g. Means & Parcher 
1963, pp. 323-327) that the internal friction angle 4 decreases with v. Also, Bagnold 
(1966) has suspended various particles in liquid of the same density and decreased the 
fractional solids content v until the residual shear resistance at zero shear rate dis- 
appeared. This concentration vo a t  which ‘fluidity’ (i.e. 4 = 0) occurred corresponded 
to values of h of around 12-14. For the present analysis, in the absence of more detailed 
information, we assume a simple linear relationship between sin 4 and v as follows: 

sin $ = k(v - vo) for v 2 vo, 
0 for v < v,,, 

b = (  
(3.27 a )  
(3.27b) 
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where k is a constant chosen to give the appropriate value of # at, for example, the 
critical void ratio. 

The phenomenological coefficient a which appears in (3.13) and (3.15) is chosen to 
be 

a = constant for v 2 vo 
= o  for v c vo 

( 3 . 2 8 ~ )  

(3.28 b) 

in order that To be zero for concentrations less than that a t  which fluidity occurs. A 
more general dependence upon (v - vo) may be more appropriate, but with nothing 
further to guide us, we merely assume (3.28). 

3.3. Dissipative part of the stress tensor 
Although individual grains may behave in an elastic manner, the bulk behaves in 
an inelastic way during continued deformation since the grains are not connected. 
There is virtually no tendency for the bulk to want to return to some previous state, 
i.e. it has no memory (or a t  most an extremely short one, associated with the elastic 
deformation of individual grains, which we can neglect). We can consider the bulk 
solid to be similar to a purely viscous-inelastic, isotropic fluid, a so-called Stokesian 
or Reiner-Rivlin fluid (Serrin 1959; Aris 1962). 

The form of the coefficients a; and a,  in (3.25) should be so chosen that the expres- 
sion for T can predict the results of Bagnold (1954) for the case of simple shear. Let 
us restrict attention to flows which are isochoric or approximately so (but where 
variations in v are still permitted) and assume that the coefficients a; and a1 depend 
only on the second principal invariant I, as well as v and vo. (Note that both ll and 
I3 are zero for isochoric, two-dimensional, fully developed channel or chute flows.) 
We propose that the simplest appropriate representation for the dissipative part of 
the stress tensor is then 

T-To=T*  = 4 , ~ ~ I , l + 4 p ~ 1 1 ~ 1 * D ,  (3.29) 

where the coefficients po and ,ul are functions of v and tensile stresses are considered 
positive. 

For the case of simple shear where u, = u1(x2) and u, = us = 0, (3.29) yields 

( 3 . 3 0 ~ )  

(3.30b) 

T:, = Tg3 = T& = T:3 = 0. ( 3 . 3 0 ~ )  

In  this case all three normal-stress components of T* are equal whereas a more 
general form such as (3.10) could exhibit normal-stress differences. At present the 
experimental techniques are not developed to the extent that normal-stress effects 
of this kind could be distinguished. 

It is seen from (3.30) that both normal and shear stresses vary as (aul/8x,)2 in 
accordance with the coaxial rotating cylinder experiments of Bagnold (1 954) per- 
formed a t  the higher shear rates corresponding to his so-called grain-inertia regime. 
From experiments, like those of Bagnold, in which Ti, and TT, are measured (and 
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Bulk solid 
Natural angular beach sand 

(0.318-0.414 mm) 
Spherical lead shot 

(1.6 mm diameter) 
Wax sphzres 
(1.32 rnm diameter) 

v, 
( A  = 00) l’m Am vo A0 

0.644 0.555 19 0.51 12-4 

0.74 0.63 18.5 - - 

0.74 - - 0.60 14 

TABLE 1 .  Values of critical fractional solids contents for various bulk solids 
(after Bagnold 1966). 

assuming no gradients of v) we may determine the variation of the coefficients p,, 
and p1 with h or v. For h greater than that corresponding to  fluidity, Bagnold (1966) 
found that the stresses increased very rapidly with v and suggested TZ2 N A l l .  

For our purposes it is more convenient to express the stresses in terms of the frac- 
tional solids content v. On the basis of Bagnold’s (1954) experiments we may assume 
as approximations 

v, - Vo * 
Po = P o  Pl = PI (-) for vo < 1’ < vm, (3.31), (3.32) v, - 1’ v, - 1’ 

where v, corresponds to  the densest possible concentration (i.e. where h = a), vm is 
the maximum value of the fractional solids content a t  which continued shearing can 
occur (i.e. the v associated with the critical voids ratio), and Po and P1 are constants. 
Some values of v,,, v,, v0 and their associated values of h quoted by Bagnold (1966) are 
listed in table 1 .  

No special significance should be attached t o  the particular forms of (3.31) and 
(3.32), they are merely convenient curve fits to Bagnold’s experiments for 1.32 mm 
diameter wax spheres. Other analytical forms different fkom (3.31) and (3.32) could 
be used to  fit the data and other sizes, shapes and materials may behave differently. 
Bagnold (1954) found that for h > 12 the ratio JTT,/T,*,( of the shear stress to the 
normal stress was virtually independent of h (and thus v) and approximately equal to 
0.4. Thus we take 

where q5D is called the dynamic internal friction angle. 
The theoretical stresses for the simple-shear example (3.30) include a normal stress 

T& in addition to  the normal stresses T& and Tz2. Such a normal stress is expected 
physically on the basis of simple particle collision arguments (Bagnold 1954). 

Although the accurate measurement of T& would be a difficult experimental task, 
a simple experiment to  indicate the presence of such a stress has been performed. 
A circular cylinder roughened by gluing glass beads to  its surface was rotated to  
form a vortex flow in a mixture of glass beads and a solution of methanol and bromo- 
form with the same density as the beads (figure 10a; the 3-direction is along the axis 
of the rotating cylinder). If the ‘fluid ’ behaved in a Newtonian fashion then we should 
expect the free-surface profile gradually to decrease close to  the rotating cylinder as 
shown in figure lo@).  However, when normal stress-effects are present, then we 
might expect that  they would be evidenced by an increase in the free-surface level 
near the cylinder as shown. Assuming that the normal stresses in all three directions 

P1/Po = constant = tan$D, (3.33) 
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Glass beads in solution 
of broinoform and 
methanol 

(a ) 

FIGURE 10. Experiment to indicate presence of normal-stress effects. (a) Rough cylinder rotating 
in beaker containing neutrally buoyant glass beads suspended in a solution of bromoform and 
methanol. ( b )  Anticipated velocity profile due to rotating cylinder and increase in free-surface 
height due to normal-stress effects. On the basis of Bagnold’s (1954) experiments it is estimated 
that Ah 1: 4 cm assuming h N 12, w N 1000 and T N 1 cm. 

are of the same order of magnitude and using Bagnold’s (1954) data for h = 12 with 
a cylinder radius of 1 em and rotation rate of 1000 r.p.m., we might expect that  
the free-surface level should be increased above that for Newtonian behaviour by the 
order of fr cm next to the rotating cylinder. Figure 1 1  (plate 1 )  is a photograph of the 
experiment in operation. A bump in the free surface of the kind anticipated is evident. 
Some care was necessary to generate the distinct axisymmetric bump shown in the 
photograph. An asymmetric bump which rotated a t  a speed rather less than that of 
the rotating cylinder was more typical. Nevertheless, the presence of the normal 
stress T& was apparently demonstrated. 

It is worth noting also that the secondary flows evident in the inclined-chute experi- 
ments (see last part of $2) could be generated by normal-stress effects of the kind 
described by (3.29). It is simple to demonstrate this qualitatively. Consider flow in a 
rough-walled channel of finite width. Assuming a reasonable form for the first-order 
streamwise velocity distribution u1(x2, x3), the T& stress distribution across the 
channel near the free surface and near the bed can be estimated from (3.29). The 
resulting pressure distributions are such as to  generate secondary flows similar to 
those observed. 

4. Analysis of two simple flows 

in the solution of two simple two-dimensional shear flows, 
The constitutive equation developed in the previous section will now be applied 
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FIGURE 12. Two-dimensional gravity flow of bulk solid down a rough inclined plane. 

4.1. Flow down an inclined chute 
Consider a fully developed, two-dimensional, steady flow of a cohesionless bulk solid 
of constant depth h down a rough plane inclined a t  an angle 5 to the horizontal as 
shown in figure 12. Since there are no accelerations, the balance of linear momentum 
yields 

-TI2 = g s i n [ ~ ~ * p d x 2 ,  (4.1) 

-T22 = gcos[/*'pdx2, 0 

in which p = yv [equation (3.1)] and 

T12/T2, = tan5 = constant, (4.3) 

where g is the gravitational acceleration and p is the bulk density. 
From (3.13), (3.15), (3.27), (3.29) and (3.30) we find 

TI2 = T!2+TTz =P1IU1,21U1,2, (4.4) 

T22 = Tg2+5"& = - a ( b - ' + l ) v , z v , 2 - ~ u , ( u , , ) ~ .  (4.5) 

T12 = -P1(uI,2)2. (4.6) 

For the case to be studied ul, is always negative, thus we can write 

Combining (4.3), ( 4 4 ,  (4.6) and (3.33) yields 

Note that 5 must be greater than the angle of repose $R for flow to occur on a rough 
plane but must be less than the dynamic internal friction angle $D,  otherwise the 
flow accelerates; thus for steady, fully developed, constant depth flow 

$22 < 5 < 4 D .  (4.8) 

The variation of p over this depth is small and we can approximate the integrals in 
(4.1) and (4.2) as Ira p dx, z pxz = yVxz, (4.9) 

where p and 5 are average values of p and v over the depth h. 
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By making use of (3.28), (4.1) and (4.9) we may put (4.7) in the form 

(4.10) 

where I? = gyPsin<(l/tanc- l/tan$,) = constant. (4.11) 

The fractional solids content varies only slightly over the depth, a t  most between 
v, and vo, and we approximate (4.10) as 

( v - v l J ) - b , 2  = * (4.12) 

where = constant. 
k 1 (4.13) 

Equation (4.12) may be integrated for cases in which v either decreases or increases 
with depth x2. Only the latter case (1.1, positive) will be discussed here, in conformity 
with the situation evident in the present experiments (see $6). I n  this case (4.12) 
yields 

(4.14) 

where the constant C is zero if E' = vo a.t the free surface x2 = 0. 
Note that since a = 0 for v < v0, (4.5), (4.6) a,nd (3.33) yield 

TI2/Tz2 = tan$, for v < vo. (4.15) 

Since in general for steady flow Tl2/TZ2 = tan 6, 
(4.15) implies that steady fully developed flows are not possible for situations when 
v < vo and the channel inclination 5 < $D. Thus in taking v = v0 a t  the free surface 
we are assuming that the flow adapts to the lowest concentration consistent with a 
fully developed flow. 

Because there is a maximum value of the fractional solids content vm a t  which 
continued shearing can occur, (4.14) provides the maximum flow depth possible for 
fully developed flow: * 

h, = [ 3 (q (v,- v o ) q  . (4.16) 

From (4.14) the distribution of v over the depth may be expressed approximately as 

(4.17) 

where h is the uniform depth of flow and v,, is the fractional solids content a t  the 
channel bed. 

I n  order to determine the velocity profile, (3.32), (4.1), (4.6) and (4.9) may be 
combined in the form 

Using the approximation (4.17), (4.18) may then be put in the form 

(4.18) 

(4.19) 
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FIGURE 13. Theoretical non-dimensional velocity profiles for two-dimensional flow 
down a rough inclined plane. 

where N = (v,-vo)/(vm-vo) and y = (x,/h)*. Integrating (4.19) and taking the bed 
to be so rough that the no-slip condition applies there, we obtain 

(4.20) 

where the ,Ci are the binomial coefficients ?Ci for r = 4. 
It should be emphasized that, if the bed is sufficiently smooth that the angle of 

friction between the bed and the bulk solid is less than the angle of internal friction, 
slip occurs and slug-type flow results. 

The non-dimensional velocity profiles, given by 

(4.21) 

where Pj = ,Ci( - N)j/(2j + 1 )  (4.22) 

and U is the surface velocity, are shown in figure i 3 for various values of the parameter 
N .  Although curves are shown for 0 < N < 1, the maximum possible value for N is 
less than unity since v m  < tim. 

From (4.14) it can be shown that 

N - I? - sinc(l/tanfc-l/tan$,). (4.23) 

Thus if the chute inclination fc is #D,  then N = 0, the concentration is uniform, 
v = v,, and the velocity profile has the form 

ul/u = 1 - (x2/h)4. (4.24) 
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FIGURE 14. Two-dimensional gravity flow of a bulk solid down a 
rough-walled vertical channel. 

As is decreased from q5D to q5R (the minimum value for fully developed flow), the 
variation in density over the depth increases and the velocity profiles become less 
full and eventually develop a shape with an inflexion point somewhat reminiscent 
of a laminar boundary layer near separation. The physical explanation of this be- 
haviour is evident from (4.1), (4.6) and (3.32). The shear stress T,, varies almost 
linearly with x2 for all inclinations y. Since p1 is so sensitive to variations in v, a slight 
increase in v near the bed reduces the shear rate ul, , required there for the equilibrium 
of forces. 

Note that from (4.20), (4.14) and (4.13) the surface velocity U can be shown to 
depend upon a. Thus, in principle, the coefficient a could be determined from ex- 
periments of flow down inclined chutes if P1 and k were known from other experiments 
such as those of Bagnold (1954). 

4.2. Flow in a vertical channel 
An analysis similar to that in the previous subsection can be performed for the fully 
developed two-dimensional flow of a cohesionless bulk solid in a rough-walled vertical 
channel of width 2B as shown in figure 14. The balance of linear momentum yields 

T,, = constant = - A .  

(4.25) 

(4.26) 

Using the constitutive relations (4.5) and (4.6) gives the approximation 
a@-’ + 1) (v, 2)2 = A - (po/pl) pgx, for x2 > 0 (4.27) 

and ( u ~ , ~ ) ~  = p11yYgx2 for x2 > 0. (4.28) 

Using approximations similar to those used to derive (4.12), we may put (4.27) in 
the following form: 

a 
(v-v0)-3v,, = * (-) 1 !I (A---pyz,) P o -  . 

M ,  Pl 
(4.29) 

If we take v = vo a t  the wall x2 = B and v, , positive then (4.29) may be integrated to 
yield 

(4.30) 
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Here the fractional solids content v is a maximum at the centre-line of the channel and 
decreases to v0 a t  the walls. There is a maximum possible value of the channel half- 
width B for which there is no plug-flow region. This maximum value B,,, corresponds 
t'o the case when the fractional solids content v, a t  the centre-line is equal to v,. 

Substituting (3.32) into (4.28) yields 

v - v o  4 2 = - e)' [ 1 - (D) vm- vo (-)] vc- vo 4 x 2  for x2 > 0. (4.31) 

From (4.30) we obtain 

By using (4.32)' we may put (4.31) in the form 

du, = - 2  - [ l - R ( l - ~ ~ ) ~ ] ~ B * z ~ d z  for r2 > 0, (3' 

(4.32) 

(4.33) 

where R = (vc-v,,)/(vm-vo) and z = (x2/B)*. Integrating (4.33) and applying the 
no-slip condition at the wall yields 

(4.34) 

Dividing (4.34) by the velocity U a t  the centre-line gives the non-dimensional velocity 
profile : 

(4.35) 

which is shown in figure 15 for various values of the parameter A. 

profile is given by 
For the case R = 0, the fractional solids content v is vo throughout and the velocity 

(4.36) U1/U = 1 - (x2/B)%, 

which is the same form as that for inclined-chute flow when N = 0. With increasing 
R the concentration increases in the central portion of the channel and the velocity 
profile becomes more blunted. 

5. Apparatus and experimental procedure for inclined-chute and vertical- 
channel flows 

Experiments were performed in an attempt to investigate some features of the 
two-dimensional shear flows studied theoretically in the previous section. Velocity 
profiles a t  various streamwise stations were measured for both the vertical-channel 
and the inclined-chute flow. The variation of depth with streamwise distance was 
measured for the inclined-chute flow. 
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FIGURE 15. Theoretical non-dimensional velocity profiles for two-dimensional 
flow down a rough-walled vertical channel. 

5.1. Floul material, test section and material handling equipment 
The bulk solid used as the flow material was composed of spherical polystyrene beads 
(figure 16a, plate 2) wit8h a specific gravity of 1.03. Figure 16(6) (plate 2) shows the 
particle size distribution; the mean diameter was approximately 1.2 mm. 

The experimental rig was designed such that both the inclined-chute and the 
vertical-channel tests could be performed with the same basic apparatus, which is 
shown schematically in figure 17. The beads were stored in the upper supply bin. 
A sheet-steel hopper in the form of an inverted pyramid was attached to the top, 
plywood part of the bin, which has a cross-section of 0.8 x 0.8 m. Since the flow rate 
of granular materials through orifices is independent of the head for heads greater 
than a few times the orifice dimensions (Brown & Richards 1970, p. 167), the bin 
provided a constant discharge for almost all of the granular material which it con- 
tained. The test section was bolted directly to a flange on the bottom of the hopper 
for the vertical-channel tests. Plates with circular orifices of various diameters could 
be inserted at the bottom of the vertical channel to control the flow rate. An adjustable 
angled Perspex transition section, which connected the test section to the hopper, 
was used in the inclined-chute tests. Various gates could be fixed in the transition 
section to control the flow rate and upstream flow depths. After flow through the test 
section, the beads went either directly (for the vertical-channel test) or through an 
inclined pipe (for the inclined-chute test) t o  the 40 gallon collector drum. After the 
supply bin had emptied, the collector drum was capped and the polystyrene beads 
were transported pneumatically through a spiral plastic pipe (5  cm diameter) up 
again to the supply bin. 

Two of the side walls of the 1.22 m long test section were smooth glass to permit 
slip of the bulk solid as well as to enable flow visualization. The other two side walls 
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FIGURE 17. Schematic diagram of inclined-chute and vertical-channel apparatus. 
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FIGURE 18. Geometry of rubber-sheet wall roughness. 

were made from an aluminium channel faced with rough rubber sheets to maintain a 
no-slip condition. The overall objective was to generate a two-dimensional shear flow. 
Figure 18 illustrates the rubber wall roughness, which is similar to that used on some 
table tennis bats. The test section was rectangular in cross-section, 3-86 cm between 
the two glass walls and 3.46 cm between the tops of the roughness elements on the 
roughened aluminium walls. 

Provisions were made a t  three streamwise stations (33, 63.5 and 94 cm from 
the test-section entry) to accommodate the transrersing gear for measurement of the 
velocity profiles. 

5.2. Instrumentation 

The method of measuring velocity profiles by analysing cine films of the flow described 
in $ 2  was not very suitable for the more turbulent shear flows and a better way which 
could automatically average the velocity fluctuation over at least a few seconds was 
required. A technique was devised which makes use of two fibre optic probes set a 
small distance apart in the streamwise direction (see figures 19 and 20) .  The probes 
were mounted in a traversing probe holder with the axis of each probe perpendicular 
to the glass side walls. A dial gauge was used to record the position of the probes during 
the traverse. 

The MTI RD-P065R ‘Fotonic fibre optic probes’ were used in combination with 
MTI KD-C2S ‘cartridges’ and MTI HD-45 ‘Fotonic control units’; all are manu- 
factured by Mechanical Technology Incorporated of Latham, N.Y. 

The probes contain a bundle of optical fibres, of which about half transmit light 
from a source in the cartridge and half act as receivers. The probes are normally used 
as displacement transducers and operate by detecting the intensity of light reflected 
from a nearby surface. The output of each unit depends upon the proximity of a light- 
reflecting surface to the tip of the probe. A typical calibration curve is shown in figure 
21. I n  order that we operated on that portion of the calibration where output de- 
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FIGURE 19. Arrangement of fibre optic sensors for bulk solids velocity measurement. 

creases with distance, a glass spacer plate 0.86 mm thick was used between the end 
of the probes and the flowing beads (figure 19). Thus the passage of a single particle 
past one of the sensors generated a pulse-like output. Flow of a mass of beads generates 
a fluctuating signal from the upstream sensor and a similar, but time-delayed, signal 
from the second sensor. By cross-correlating the two sensor outputs, the transit time 
between the two probes and thus the mean veIocity can be determined. A Princeton 
Applied Research model lOOA correlator was used to obtain the cross-correlation 
function, which was displayed on a Tektronix 502 oscilloscope. A typical oscillogram 
of the cross-correlation function taken during the inclined-chute tests is shown in 
figure 22 (plate 3). A second Tektronix 502 oscilloscope was used to monitor the Fotonic 
sensor signals (figure 20). 
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FIGURE 20. Block diagram of circuit for velocity measurement using fibre optic sensors. 
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FIGURE 21. Typical fibre optic probe calibration. 

Preliminary t,ests with this technique showed that the optimum spacing between 
the probes was between 2 and 4 mm for the polystyrene beads used in these tests. 
Since the transmitting and receiving fibres are distributed randomly in the bundle 
making up the Fotonic probe it was necessary to perform calibration tests to deter- 
mine the effective separation distance between the two probes mounted in the travers- 
ing probe holder (figure 19). A variable-speed d.c. motor was used to rotate a large 
‘dish’ containing beads. With the probes mounted above the beads when they were 
moving by at a known velocity, the effective separation distance was obtained from 
the measured cross-correlation function. The effective separation distance of 3.66 mm 
agreed closely with the measured distance between the geometric axes of the probes. 



Gravity flow of cohesionless granular materials 85 

1 I I I I I I I I I I I 

2.0 I- -I 

1.6 
h 

E 
w 

u.4 

A- - -A 

0 0 
0 0-- -ow-- O - - - O  __.- 

CI 
,-J---o--- 

- 

I I I I I I I I I I I 1 

0 20 40 60 80 100 120 
Distance downstream, X I  (cm) 

FIGURE 23. Comparison of experimental depth profiles with Roberts' (1969) theory. Rough 
bottom wall, 5 = 33.6". 0, 0, a, Inass flow rates of 45.5, 88.3, and 129.8 g / s  respectively; 
open symbols, visual readings during each run; solid symbols, depths estimated from photo- 
graphs of free surface. --, Roberts' theory for p = 0.453 and & = 0.453. 

6. Experimental measurements of developed flows 
6.1. Flow in inclined chutes 

6.1.1. Depth projiles. Streamwise depth profiles were measured for several bed 
inclinations y. Although flow occurred for bed slopes as low as 5 = 25", only a surface 
layer was in motion. A wedge-shaped dead zone existed below the surface layer such 
that the inclination of the 'free' surface was about 26.5". Because of friction on the 
vertical glass side walls, the free-surface slopes at  which motion occurred was slightly 
larger than the angle of repose of the polystyrene beads (q5R 21 24"). By a bed slope 
of about 29" the dead zone had disappeared and the depth profiles tended to become 
more uniform. 

Figure 23 shows observed depth profiles for three mass flow rates corresponding to 
three different upstream gate openings at a bed slope = 32%". Because of the 
turbulent saltating motion of individual particles a low density surface layer existed. 
The 'free surface' was therefore not distinct and i t  was difficult to estimate accurately 
the flow depth from visual observations. The open symbols in figure 23 were obtained 
during the test runs from sightings on scales glued to the glass side wall. Still photo- 
graphs of the surface at various streamwise stations were also taken using an electronic 
flash unit. It was possible to estimate the mean 'free surface' from these still photo- 
graphs, accounting for the low density surfaee cloud of saltating particles. The depths 
estimated from the photographs were slightly larger than those estimated visually 
during flow (figure 23). 

The profiles shown in figure 23 for the two lower flow rates reach a uniform depth 
in a relatively short distance. This behaviour is in accord with that of the preliminary 
experiments performed with quite different apparatus and materials ( 3  2.2). 

Depth profiles were also calculated using Roberts' (1969) theory. This theory makes 
use of an equivalent coefficient of friction pB between the flowing beads and the bed 
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FIGURE 24. Determination of frictional parameters for Roberts' ( 1969) theory. Tests with 
polystyrene beads in chute with rough bottom and glass side walls. A, 0, carts of 1.5 and 3.3 g 
respectively. Least-squares fit to data yields p = 0.453 and k = 0.463. 

and wide walls of the chute. Roberts expressed p E  as a linear function of the material 
depth-to-width ratio hlw: 

(6.1) /AE = , ~ ( 1 +  k h/w).  

Following Roberts (1  969), p E  was determined by measuring the angle of repose for 
beads present in the chute and retained between the two end plates of carts which 
moved freely in the chute and rested on runners fixed to the top of the glass side walls. 
Corrections were applied to account for the cart weight and runner friction. The carts 
were made from thin balsa-wood sheets in order to be as light as possible (1.5 g and 
3.3 g) and the corrections to p E  were small (at most 2 % for the 1.5 g cart and 6 yo 
for the 3.3 g cart). Figure 24 shows the results of these tests. A linear least-squares fit 
to these data determined that p = 0.453 and k = 0.453. The measured mass flow rates, 
initial flow depths and an estimated bulk density jj = 0.58 g1c.c. were used to esti- 
mate the initial mean flow velocity. The depth profiles predicted by Roberts' theory 
(figure 23) continually decrease with distance and fall below the measured depths. 

Depth profiles were also measured for slightly higher bed inclination angles: 
6 = 35.3" and 39.3". For these values of 6, Roberts' theory again predicted accelerating 
flows whose depths were considerably below the measured depths. The experimental 
flows approached uniform depth with downstream distance. At higher bed slopes, 
the experimental flows were found to accelerate over the length of the chute, conform- 
ing more closely to the predictions of Roberts. This behaviour is in accord with the 
analysis in $4, which suggested that fully developed, constant depth flows could exist 
for only a limited range of bed slopes, q5R < 6 < q5D. 

6.1.2. Velocity projiles. Detailed velocity measurements were made for several 
angles of inclination 6 where the flows appeared to be well developed, with little 
variation of the depth and velocity profile in the streamwise direction. Figures 25-21 
show the velocity profiles at  three streamwise stations for 5 = 32.6", 35.3" and 39.3". 
Note that points which lie above the mean 'free surface' have been recorded. The 
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FIGURE 26. Velocity profiles for flow down inclined chute at  a mass flow rate of 108.7 g/s and 
6 = 35.3". 0, A, 0, streamwise stations 33.0, 63.5 and 94.0 cm respectively from entry. 
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FIGURE 27. Velocity profiles for flow down inclined chute a t  a mass flow rate of 132.6 g/s and 

5 = 39.3". 0, A, 0, streamwise stations 33.0, 63.5 and 94.0 cm respectively from entry. 
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FIGURE 28. Non-dimensional velocity profiles for flow down inclined chute. 
0, A, n, streamwise stations 33.0, 63.5 and 94.0 cm respectively from entry. 
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5 8 1  

(deg) (em) 
32.6 33.0 

63.5 
94.0 

35.3 33.0 
63.5 
94.0 

39.3 33.0 
63.5 
94.0 

h U Mc Mfn M d M m  
(cm) (cm/.) (g/d ( g / 4  
1.5 66.5 69.3 88.2 0.786 

63.0 
63.0 

95 
100 

131 
131 

1.4 93 116 108.7 1.07 

1.25 122 155 132.6 1.17 

TABLE 2. Parameters associa.ted with measurements of inclined-chute velocity profiles. 

instrumentation senses saltating particles in the low density surface cloud, even though 
their passage past the probes may be infrequent. The experimental velocity profiles 
with an inflexion point are similar in shape to the theoretical predictions of 5 4.1 (see 
figure 13). 

The velocity profiles were replotted (figure 28) in non-dimensional form, u l / U  us. 
x2/h, using values of h and U associated with the mean 'free surface) determined 
from the still photographs (see table 2). With increasing 5 the profiles become more 
full as anticipated from the analysis in 5 4.1. 

The mass flow rates M, were measured for each run and the mean value for each 
chute inclination is listed in table 2 .  Assuming the flow to be two-dimensional and 
of width ui, the mass flow rate can be calculated from the velocity profile as follows: 

or 

With w = 3.86 cm, F estimated as 0.58 g/c.c., h and U as listed in table 2, and the 
integral in (6.2) evaluated from figure 28, mean values of M, for each chute inclination 
were determined and are shown in table 2. 

The ratios of M, to M, for the three values of care also given in tabIe 2. Considerable 
uncertainty exists in the calculated mass flow rate 34 because of the uncertainties in 
both 3 and h. The value of 0.58 g/c.c. for j i  is only an educated guess. A slight change 
in the choice for h unfortunately results in a large difference in M,. 

For 6 = 32.6", MJM, = 0.786, i.e. quite a bit less than one. Since it is unlikely that 
p is much greater than 0-58 g/c.c. and h much larger than 1.5 cm, it appears most 
probable that here the flow was not two-dimensional. The friction between the 
vertical glass side walls and the adjacent beads not only retarded the flow but probably 
caused a three-dimensional flow to develop accordingly. 

For c = 35.3" and 39.3") the values of MJM, are both somewhat larger than one, 
and hence a two-dimensional flow appears more likely. Slight reductions in the esti- 
mates of ,Z and h could bring M,/M, t o  unity. 

I n  the tests, friction arose between the flowing beads and the vertical glass side 
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FIGURE 29. Experimental non-dimensional velocity prolfie in vertical channel a t  a mass flow 
rate of 93.1 g /s .  0, A. 0, streamwise stations of 33.0, 63.5, and 94.0 om respectively from 
entry. Open and solid symbols distinguish two different runs. 

walls. Since this side-wall friction was not considered in the analysis of 54.1, direct 
comparisons between figures 13 and 28 are not appropriate. However, the general 
trends of the analysis seem to be verified. 

6.2. Flow in vertical channels 
The same test section as was used in the inclined-chute tests was mounted in the 
vertical position and flow control orifice plates were installed at  the lower end of the 
channel. Orifice diameters of 1-27) 1-91 and 2.54 cm were found to give mass flow 
rates of 12.1, 42.2 and 93.1 g/s  respectively. 

6.2.1. Velocity pro$les. Velocity profiles were measured a t  three streamwise stations, 
33, 63.5 and 94 cm from the entry, for the three mass flow rates. The velocity profiles 
were found to  be fully developed and similar at all three stations for each of the three 
mass flow rates. The non-dimensional profiles, u l /U  us. x2/B, for a mass flow rate of 
93.1 g/s  are shown in figure 29. The data show little scatter and good reproducibility. 
The velocity approaches zero at  the two rough side walls (x2/B = & 1). The experi- 



Gravity $ow of cohesionless granular materials 

Mrn U Mc M c I M m  
( g / s )  (cm/s) ( g / s )  

91 

12.1 1.30 6.99 0.878 
42.2 4.43 23.8 0.664 
93-1 9.84 51.3 0.838 

TABLE 3. Vertical-channel mass flow rates. 

mental velocity profiles for the two lower mass flow rates were virtually identical to 
those of figure 29 and are not shown for this reason. 

If we assume that v, = 0-74 ( A  = m ) ,  vo = 0-58 ( A  = 12) and the centre-line concen- 
tration corresponds to the critical voids ratio v, = v, = 0.63 ( A  = 19), then the para- 
meter R = (v, - vo)/(vco - vo) N 0.3. It is found that the theoretical velocity profile in 
figure 15 for R = 0.3 is close to the experimental one shown in figure 29. This similarity 
is perhaps fortuitous since it was found by direct measurement of the mass flow that 
the velocity profiles were not two-dimensional as in the theory. Table 3 compares 
M,, the mass flow rate measured directly, with .&Ic, the mass flow rate determined 
from the wall velocity profile (figure 29) assuming a two-dimensional flow and p = 0.58 
(similar to the procedure followed in $6.1.2).t The ratio Mc/2clm varied from 0.538 to 
0.578, indicating very large departures from the assumed two-dimensional flow. The 
effects of the friction on the glass side walls were evidently far from negligible even 
though slip did occur. 

I n  the present tests the shear zones spanned the full width of the channel whereas 
the analysis of $4.2 noted the possibility of plug-flow regions. Some preliminary 
tests in a wider apparatus than that described in $5.1 have shown that plug-flow 
regions can exist in the middle of the channel with the shear-flow regions restricted 
to  boundary layers near the rough side walls. The widths of these shear zones appeared 
to be proportional to  the particle diameter and were about 10 to 15 bead diameters. 

7. Granular jumps 
As mentioned in $2, ‘granular jumps’ analogous to hydraulic jumps in water can 

be generated by downstream channel controls or obstructions when the upstream 
Froude number is greater than unity. An inclined-chute test section similar to that 
described in $5.1 but with a smooth bottom and 25 cm high glass side walls was 
made for observations of granular jumps. Figure 30 (plate 4) shows the jump profiles 
obtained with the polystyrene beads flowing at two different upstream Froude num- 
bers. The jump is very abrupt by comparison with the analogous hydraulic jump. 
The jump steepness is found to increase with upstream Froude number. Energy 
dissipation evidently takes place through shearing motions within the jump; since 
the shear stresses are so high the required dissipation can be accomplished within a 
relatively short distance. 

t Note that this value of p is somewhat less than that corresponding to the values of the 
fractional solids content just mentioned for uniform spherical particles, 0.58 < Y < 0.63. 
The value of p = 0.58 is probably a conservative one and is based upon bulk density measure- 
ments for loose packings in containers similar in size to the experimental flow channel. 
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FIGURE 31. Definition sketch for granular jump. 

7.1. Theoretical analysis 
An analysis quite similar to that for the hydraulic jump may be performed to predict 
the depth change in the granular jump. One of the referees has drawn my attention 
to the work of Morrison & Richmond (1976), which contains a related but less general 
jump analysis than that which follows. Consider the steady two-dimensional flow of 
a bulk solid in an inclined channel with a granular jump as shown in figure 31. We 
define pi and C< respectively as the depth-averaged densities and velocities, hi as 
the depths, L as the length of the granular jump, W as the weight of the material in 
the jump and 5 as the bed slope. The subscripts i = 1 and 2 refer respectively to  
stations upstream and downstream of the jump region. The momentum equation 
applied to the control volume shown yields 

p1 Ulhlw(P2 CG -pl U,) = Pl - P2 + W sin 6- Ff (7.1) 

after making use of the continuity equation 

P1 Ulh, = P2U2h2, 
where w is the channel width, Pl and P2 are the normal forces acting on sections 1 and 
2,  F, is the bed and side-wall frictional force between stations I and 2,  and the pi are 
the Boussinesq momentum coefficients introduced to account for non-uniform velocity 
and density profiles. If the pressure were hydrostatic, then the normal forces Pi would 
be given by +pi gh; w cos 6. Since the bulk solid is frictional it is necessary to introduce 
a pressure coeficient ki analogous to the earth pressure coefficients used in soil mech- 
anics, thus 

Pi = &ki(jjighqu: cos 6). 
We may express the weight of material in the jump as 

(7.3) 

W = BRgw-W, h1+ j j 2  hJ , (7.3) 

where R is a profile coefficient to account for the shape of the jump. For a trapezoidal- 
shaped jump of uniform density @ = l - O ) ,  the bed and side-wall friction force may be 
expressed as 

where peif is the effective coefficient of friction and is a function of the depth-to-width 
ratio of the bulk solid in the channel. 

-F; = W cos C, (7.5) 
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FIGURE 32. Comparison of theoretical and experimental conjugate depth ratio US. upstream 
Froude number for granular jumps in polystyrene beads. V ,  0, 0, A, 6 = 28.5", 29.5", 31.3" 
and 35" respectively. -, equation (7.7) for RL/(h,-h,) = 1.0. 

Substituting (7.3)-(7.5) into (7.1) yields 

(k,eosC--Z) EL (33- (-) & ELz - (J2- 3 (5) (2p,B2,+klcos6) (2) 
h2 PZ h, 

where Z = sin Y-,uefi COB 6 and Fl = Ci/(ghl)a is the upstream Froude number. 
Since appropriate values for the various parameters hi, pi, perf, RL/h,, etc., are un- 

known a priori, some exploratory calculations were made to determine the effects of 
variations of these parameters on the relationship between h,/hl and Fl given by (7.6). 
Information from the tests was used as a guide in choosing ranges for the parameters. 
The bulk density upstream of the jump appeared in the tests to be slightly less than 
that downstream of the jump, hence p l / p 2  < 1. Since the upstream flow was relatively 
loose and probably close to an active pressure state (in the soil-mechanics context) 
ki might be expected to be close to but less than unity. The jump was generated by 
a downstream obstruction and hence the downstream flow was most likely in a passive 
state with k, > 1.  While the upstream velocity profile appeared to be fairly uniform 
such that p1 II 1, the downstream velocity profiles became more and more non- 
uniform with increasing 5, with low velocities a t  the channel bottom and hence 
B, > 1. The exploratory calculations based upon (7.6) showed that the effects of 
p1/p2 and p ,  upon h,/hl a t  a fixed Fl were small and increases in k, and peci each de- 
creased h,/hl a t  a fixed Fl. Therefore an estimate of the upper limit on h,/hl may be 
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FIUURE 33. Comparison of theoretical and experirr-ental conjugate depth ratio vs. upstream 
Froude number for granular jumps in glass beads, 5 = 20.1". - , equation (7.7) for KL/ 
(h,-h,)  = 1.0. 

obtained if we take ki = pi = p l / p 2  = 1.0 and peff = 0 in (7.6). Equation (7.6) then 
reduces to a simpler form which has the solution (Chow 1959, p. 426) 

h2/h1 = *[( 1 + 8G2)* - I], (7.7) 

G2 = F? where 
cosc-ELsin c/(h2-h,) '  

Comparisons of the experimental depth ratio VS. the upstream Proude number 
with the predictions of (7.7) are shown in figure 32 for the polystyrene-bead experi- 
ments and in figure 33 for the preliminary glass-bead experiments described in $2.  
In order to calculate the upstream Froude number from the measured depth and mass 
flow rate it was assumed that the bulk densities p1 were 0.55 and 1.4 g/c.c. for the 
polystyrene and glass beads respectively. These values of p1 are uncertain and this 
results in uncertainties in the values of Fl for the experimental points. The experi- 
ments fall somewhat below the predictions of (7.7) for i fL/(h,  - h,) = 1 but above 
those for g = 0. 

8. Concluding remarks 
The foregoing work has been concerned with the flow behaviour of cohesionless bulk 

solids under conditions of rapid shear. A constitutive equation has been proposed 
which (a )  describes a Coulomb material where the normal and shear stresses are re- 
lated and (b )  refers the stresses to the deformation rates in a nonlinear way in accord- 
ance with the experiments of Bagnold (1954). Although the present study has dealt 
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specifically with bulk solids flow, it also may have some bearing upon the apparent 
viscosity of fluidized beds. Davidson, Harrison & Guedes de Carvalho (1977) have 
recently suggested that fluidized-bed viscosity is caused by interparticle collisions 
and note the possible relevancy of Bagnold’s work. 

Attempts to  generate experimentally the two-dimensional shear flows studied 
theoretically were not completely successful because of the presence of friction on 
the glass side walls of the flow passages. For this reason, direct comparisons of the 
experiments and the theoretical predictions of $4 are not appropriate. The experi- 
ments did reflect the general trends of the analyses in the shapes of both the velocity 
profiles and the depth profiles in the inclined chute. This lends credence to the main 
features, if not necessarily the detailed validity, of the proposed constitutive 
relation. 

Further experiments concerning flow down inclined chutes much wider than those 
of the present paper are suggested. The primary factor hindering progress is the great 
difficulty of obtaining detailed experimental information during granular flow a t  high 
shear rates and low stress levels. It is encouraging that the fibre optic probes proved 
to be quite successful in measuring velocities of slipping flow past smooth waIls or at 
free surfaces. However, a way to measure velocities in the interior of a flowing bulk 
solid without significantly disturbing the flow is still sorely needed. Measurements 
of local values of bulk density during flow would also be most useful. 

The extreme sensitivity of the material response to very small changes in the 
fractional solids content v a t  the higher concentrations and the complicated nature 
of the constitutive equation for three-dimensional flows tend to discourage the hope 
that one will be able to predict with confidence anything but the simplest flows. 

The work reported here was supported by the National Research Council of Canada. 
I am indebted to C. Sciascia,, S. Yap and C. C. KO for assistance in performing some of 
the experimental work. A preliminary version of this paper was presented at the 
Euromech Colloquium 84 on Mechanics of Granular Materials, Warsaw, Poland, 13- 
16 July 1976. 

R E F E R E N C E S  

ALLEN, J. R. L. 1970 J .  Geol. 78, 326-351. 
ARIS, R.  1962 Vectors, Tensors, and the Basic Equations of Fluid Mechanica. Prentice-Hall. 
AUGENSTEIN, D. A. & HOGG, R.  1974 Powder Tech. 10, 43-49. 
BAGNOLD, R.  A. 1954 Proc. Roy. SOC. A 225, 49-63. 
BAGNOLD, R.  A. 1966 Proc. Roy. SOC. A 295, 219-232. 
BINGHAM. E. C. & WIKOFF, R.  W. 1931 J .  Rheol. 2, 395-400. 
BLAIR-FISH, P. M. & BRANSBY, P. L. 1973 Trans. A.S.M.E.,  J .  Engng Ind. 95, 17-2G. 
BRANSBY, P. L. & BLAIR-FISH, P. M. 1974 Chem. Engng Sci. 29, 1061-1074. 
BRANSBY, P. L. & BLAIR-FISH, P. M. 1975a Powder Tech. 11, 273-288. 
BRANSBY, P. L. & BLAIR-FISH, P. M. 1975b Geotech. 25, 384-389. 
BRIDGWATER, J. 1972 A.S.M.E. Paper no. 72-MH-21. 
BROWN, R. L. 1961 Nature 191, 458-461. 
BROWN, R .  L. & RICHARDS, J. C. 1970 Principles of Powder Mechanics. Pargamon. 
CHODA, A. & WILLIS, A. H. 1967 Trans. Am. SOC. Agri. Eltgrs 10, 136-138. 
CHOW, V. T. 1959 Open-Channel Hydraulics. McGraw-Hill. 
COWIN, S. C. 1974a Powder Tech. 9, 61-69. 



96 S. B. Savage 
COWIN, S. C. 1974b Acta Mechanica 20, 41-46. 
COWIN, S. C. & GOODMAN, M. A. 1976 2. angew. Math. Mech. 56, 281-286. 
DAVIDSON, J. F., HARRISON, D. & GUEDES DE CARVALHO, J. R. F. 1977 Ann. Rev. Fluid Mech. 

DAVIDSON, J. F. & NEDDERMAN, R. M. 1973 Trans. Inst. Chem. Engrs 51, 29-35. 
DRUCKER, D. C. & PRAGER, W. 1952 Quart. Appl. Math. 10, 157-165. 
ESHELBY, J. D. 1951 Phil. Trans. Roy. SOC. A 244, 87-112. 
GARDNER, G. C. 1966 Chern. Engng Sci. 21, 261-273. 
GENIEV, G. A. 1958 Rep. Acad. B l d g  Archit. USSR. 
GOODMAN, M. A. & COWIN, S. C. 1971 J. Fluid Mech. 45, 321-339. 
GOODMAN, M. A. & COWIN, S. C. 1972 Arch. Rat. Mech. Anal. 44, 249-266. 
GREEN, A. E.  & ADKINS, J. E.  1960 Large Elastic Deformations. Oxford: Clarendon Press. 
GREEN, A. E. & RIVLIN, R. S. 1956 Quart. Appl. Math. 14, 299-308. 
HAGEN, G. 1852 Berlin Monatsber. Akad. Wiss. pp. 35-42. 
JAMES, R. G. & BRANSBY, P. L. 1971 Geotech. 21, 61-83. 
JENIKE, -4. W., JOHANSON, J. R. & CARSON, J. W. 1973 Trans. A.S.M.E., J .  Engng I d .  95, 1- 

JOSSELIN DE JONG, G. DE 1959 Ph.D. thesis, Delft University. 
JOSSELIN DE JONG, G. DE 1971 Geotech. 21, 155-163. 
LEE, S., COWIN, S. C. & TEMPLETON, J. S. 1974 Trans. SOC. Rheol. 18, 247-269. 
MANDL, G. & FERNhNDEZ LUQUE, R. 1970 Geotech. 20, 277-307. 
MEANS, R. E. & PARCHER, J. V. 1963 Physical Properties of Soils. Columbus: C. E. Merrill. 
MORRISON, H. L. & RICHMOND, 0. 1976 Trans. A.S.M.E., J .  Appl. Mech. 43, 49-53. 
PARRY, R .  H. G. (ed.) 1971 Stress-Strain Behaviour of Soils. Proc. Roscoe Mem. Symp. Leeds: 

G. T. Foulis. 
PERRY, M. C. & JANGDA, H. A. S. 1970 Powder Tech. 4, 89-96. 
REYNOLDS, 0. 1885 Phil. Mag. Ser. 5, 20, 469-481. 
RICHARDS, J. E. (ed.) 1966 The Storage a d  Recovery of Particulate Solids. Inst. Chem. Engng 

RIDGWAY, K. & RUPP, R. 1970 Chem. Process Engng 51, 82-85. 
ROBERTS, A. W. 1969 Trans. A.S.M.E., J .  Engng Ind. 91, 373-381. 
ROSCOE, I<. H. 1970 Geotech. 20, 129-170. 
SAVAGE, S. B. 1965 Brit. J .  Appl. Phys. 16, 1885-1888. 
SAVAGE, S. B. 1987 Int .  J .  Mech. Sci. 9, 651-659. 
SAVAGE, 8. R. & YONG, R. N. 1970 Int. J .  Mech. Sci. 12, 675-693. 
SCHEIDEGGER, A. E. 1975 Physical Aspects of Natural Catastrophies. Elsavier. 
SERRIN, J. 1959 J .  Math. Mech. 8, 459-469. 
SOKOLOVSKI, V. V. 1965 Statics of Granular Media. Pergamon. 
SPENCER, A. J. M. 1964 J. Mech. Phys. Solids 12, 337-351. 
SPENCER, A. J. M. 1971 Geotech. 21, 190-192. 
SUZUKI, A. & TANAKA, T. 1971 I d .  Engng Chem. Fund. 10, 84-91. 
TAKAGI, S. 1962 Proc. A.S.C.E. 88 (EM3), 107-151. 
TAKAHASI, K. 1937 Geophys. Mag. 11, 165-175. 
TERZAGHI, K. 1963 Theoretical Soil Mechanics. 1 l t h  printing. Wiley. 
THEIMER, 0. F. 1969 Tram.  A.S.M.E., J .  Engng I n d .  91, 460-477. 
TRUESDELL, C. 1974 Ann. Rev. Fluid Mech. 6, 111-146. 
WIEGKARDT, K. 1975 Ann. Rev. Fluid Mech. 7, 89-114. 
WOLF, E. G. & VON HOHENLEITEN, H. L. 1945 Trans. A.S.M.E. 67, 585-599. 
ZAGAYNOV, L. S. 1967 Mech. Tverd. Tela no. 2, pp. 188-196. 

9, 55-86. 

16. 

Working Party Rep. 



Jouriml of Fluid Mechanics, k'ol. 92, purt 1 

SATiAGE 

FIGURE 1 1 .  Photograph of experiment showing bump in free surface near 
rotating cylinder due t o  normal-stress effects. 

Plate- i 

(Baring p .  96) 
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FIGUXE 16. (a) Photograph of polystyrene beads. (6) Particle size distribution. 
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FIGURE 2 2 .  ‘I’ypical oscillogram of cross-correlation function for fibrcl optic probes. 
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(b)  

FIGURE 30. Granular jumps generated during flow of polystyrene beads in inclined chut?es. 
(a )  5 = 31.3", upstream Froude number 2: 2.1, conjugate depth ratio 2: 4.4. (6) 5 = 35", 
upstream Froude number cz 2.5, conjugate depth ratio 2: 6. 
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